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Abstract

Hardware-specific optimizations in machine learning (ML) frameworks can cause
numerical deviations of inference results. Quite surprisingly, despite using a fixed
trained model and fixed input data, inference results are not consistent across plat-
forms, and sometimes not even deterministic on the same platform. We study the
causes of these numerical deviations for convolutional neural networks (CNN) on
realistic end-to-end inference pipelines and in isolated experiments. Results from
75 distinct platforms suggest that the main causes of deviations on CPUs are dif-
ferences in SIMD use, and the selection of convolution algorithms at runtime on
GPUs. We link the causes and propagation effects to properties of the ML model
and evaluate potential mitigations. We make our research code publicly available.

1 Introduction

The “reproducibility crisis” machine learning is facing, and potentially fueling [18], has drawn at-
tention to efforts that improve reproducibility. They include checklists [27] and guidelines [5; 33],
benchmarks designed with reproducibility in mind [10; 4; 22], reproducibility contests [32], and
repositories like PapersWithCode [30]. However, we find that even with a fully defined environment
and without stochastic processes, runtime optimizations of ML frameworks can cause deviations in
inference results. These are outside of researchers’ control, and cannot be fully avoided at present.

Uncontrolled numerical deviations are detrimental to many aspects of ML. If deviations occur sys-
tematically, key assumptions in federated learning [7; 25], heterogeneous ML [36], and proof-of-
learning [11] may not hold. The fact that platforms leave fingerprints in the inference results opens
new possibilities for forensics [34]. Finally, numerical deviations have implications on ML security:
specifically crafted “boundary samples” may trigger label flips depending on the hardware [35].

To study the causes and effects of these deviations, we instrument the popular TensorFlow frame-
work (version 2.5.0) on various layers. All our experiments are containerized and automatically
deployed and executed on 75 distinct hardware configurations hosted on the Google Cloud Platform
(GCP), Amazon Web Services (AWS), and on our premises. (Details of our setup are in Section B
of the supplementary material.) For a fixed trained model and input, the 75 platforms produced up to
26 different softmax vectors in the last layer. As label flips remain rare, the existence of deviations
is not apparent in typical performance metrics, such as test set accuracy.

We make three contributions:

1. We offer the so-far most comprehensive evaluation of causes and effects of (known) nu-
merical deviation in CNN inference, spanning a wide range of heterogeneous platforms.

2. We are the first to associate causes of deviations with properties under control of the ML
engineer, such as floating-point precision, layer type, or activation function.
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3. We make the code of our infrastructure1 and experiments2 publicly available, allowing
follow-up researchers to measure deviations between runs and platforms and inspect them
layer by layer. The set of supported platforms can be adjusted with limited effort.

The body of this paper is structured as follows. Section 2 provides background, establishes terminol-
ogy, and reviews related work. Section 3 presents the experimental results. Starting from end-to-end
inference pipelines, we walk through individual causes for CPUs (Section 3.1), GPUs (Section 3.2),
link them to properties of the ML model (Section 3.3), and study potential mitigations (Section 3.4),
always supported with experiments. Section 4 discusses the findings and Section 5 concludes.

2 Background

The main causes for deviations in inference results are different aggregation orders at finite precision,
and the use of different approximate convolution algorithms.

Aggregation order The order in which arithmetic operations are executed can affect the result for
limited precision. Consider an example in a toy decimal floating point representation with only one
significant digit. In this representation, integers 0 ≤ |x| ≤ 10 can be represented exactly. For values
10 < |y| ≤ 100, y must be rounded to the next multiple of 10, and the least significant digit is lost.
We will denote rounding to the nearest representable value with [x].

(a+ b) + c = [[7 + 4]− 5] = [1E1− 5] = 5 (1)
a+ (b+ c) = [7 + [4− 5]] = [7− 1] = 6 (2)

The above example shows how the aggregation order can change the result. In Equation (1), [7+4] =
[11] is rounded to 1E1 = 10. This effect is known as swamping [13]. Hence, optimizations that
change the aggregation order depending on the hardware can cause deviations between platforms.

Convolution algorithms Recall the formula for 2D convolution,

Ri,j =

h∑
n=0

w∑
m=0

Ii−m,j−nFm,n, (3)

for a 2-dimensional filter of size h×w with input I and filter F . To reduce the size of the convolution
result, sometimes a stride is applied to the convolution, which is multiplied with input indices i, j.

The naive implementation of convolution is a nested loop expressing the nested sums. This approach
is often inefficient as spatial proximity in the input does not imply locality in memory, in particular
for higher dimensions. Modern hardware uses multiple layers of caching, which depend on locality
and coalesced access for maximum performance. Due to the prevalence of convolution, especially
in ML, many optimized implementations are available [2; 3].

All optimizations reduce convolution to generalized matrix multiplication (GEMM) [6]. GEMM
convolution, the simplest optimization, extracts the relevant parts of the array into a Toeplitz ma-
trix, replicates the filter as needed, and multiplies the two matrices. GEMM convolution exists in
precomputed, implicit, and explicit variants [3]. By contrast, Winograd short convolution [9] trans-
forms both inputs and filters to achieve a lower number of multiplications. There exist fused and
non-fused variants [40]. As the transformations used for Winograd convolution are inherently lossy,
and rounding occurs at multiple stages, results may deviate. Convolutions using fast Fourier trans-
formation (FFT) exploit the fact that spatial convolution is equivalent to point-wise multiplication in
the frequency domain. The transformation to and from the frequency domain is inherently lossy for
finite numerical precision [24] and introduces deviations from other methods. In addition, modern
GPUs include special TensorCores to compute convolution directly [28].

A more detailed description of convolution approaches can be found in Section C of the supplemen-
tary material. Performance characteristics of the different approaches are excellently explained in
Blahut et al. [6]. Specific performance characteristics for NVidia GPUs are discussed in [29].

1https://github.com/uibk-iNNference/iNNfrastructure
2https://github.com/uibk-iNNference/unaNNticipated
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Figure 1: Main result: cumulative number of different softmax vectors in the last layer over all
platforms. Platforms are sorted by vendor, architecture, and core count. Core count for Intel CPUs.

Conventions We use architecture as shorthand for microarchitecture. Architecture, core count,
and memory size together form a platform. We call inference deterministic if the same input, the
same trained model, and the same platform always produce the same output. We say it is consis-
tent if the same input and model always produce the same output across all platforms. We denote
our models as Dataset-Architecture, e.g, Cifar10-R18 is a ResNet18 [15] trained on Cifar-
10 [21].

To measure the effect of numerical deviations, we use the concept of equivalence classes (EQCs):
platforms that produce identical outputs form an EQC. The number of EQCs is a measure of di-
versity. Ideally, all platforms fall into a single EQC, meaning that inference is deterministic and
consistent (as expected in theory). To quantify the magnitude of deviations, we use the remaining
precision. This metric counts the number of identical mantissa bits before the first deviation be-
tween two or more (intermediate) results. For single precision floating-point numbers, it is in the
range [0, 23]. The metric generalizes to tensors by taking the minimum of the remaining precision
of all elements.

Related work Much work has been done to improve reproducibility in ML [33; 5; 10; 4; 22].
These works make important contributions to the organizational aspects of reproducibility, but do not
address the problem of numerical deviations. The literature has examined the influence of variance
in algorithm and implementation on model training. Pham et al. [31] find that variance can lead
to significant differences in model performance and training time. Zhuang et al. [41] extend the
experiments and find differences in training performance across different GPUs and TPUs. This end-
to-end approach is beneficial for the community and informs practitioners of the potential impact
of variances in algorithm and implementation on the final model. Our work differentiates itself by
focusing on inference and by drilling down to the root causes of the observed deviations.

Deviations in ML inference have been reported in the signal processing community by Schlögl et al.
[34], however with a focus on forensics. Our earlier work offers existential evidence from a few CPU
platforms, but does not investigate causes or mitigation strategies. GPUs are also not considered.

The computer arithmetic community is well aware of the non-associativity of floating point compu-
tations [26; 19], but aims to increase precision and efficiency rather than enforcing associativity.

3 Influences on model outputs

In total, 64 of our 75 platforms were CPU-based. Depending on the model, the softmax vector of
the last layer produced between 3 and 16 different EQCs. This means all tested models failed to
produce consistent outputs across the CPU platforms. We did not observe indeterminism on CPUs.
The remaining 11 of our 75 platforms supported inference on GPUs. The softmax outputs produced
between 8 and 10 different EQCs. Every EQC had cardinality one, meaning the GPU could be
uniquely identified by the numerical deviations in the softmax vector. 39 out of 99 inference outputs
on GPUs were indeterministic. Figure 1 shows the cumulative number of EQCs over all platforms
in this scenario (see Tables SUP-1 and SUP-2 for all hardware, model, and input details).

While the main results above are end-to-end measurements for realistic inference pipelines, it is
instructive to study individual causes with specifically designed experiment on a reduced set of
platforms. All following results are supported with isolated experiments. We discuss the influences
affecting model outputs on CPUs and GPUs in turn.
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Table 1: Different CPUs produce deviations based on their SIMD capabilities.

Flag cluster

EQC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Intel Sandy Bridge 1 × ×
Intel Ivy Bridge 1 × × × ×
Intel Haswell 2 ×∗ × × × × ×
Intel Broadwell 2 × × × × × × × ×
Intel Skylake 3 × ×† × × × × × × × × ×
Intel Cascade Lake 3 × × × × × ×• × × × ×
Intel Ice Lake 4 × × ×‡ × × × × × × × × ×
AMD Rome 5 × ×§ × × × ×
AMD Milan 5 × × × × × × × ×

∗ contains 256-bit SIMD flags; † contains some 512-bit SIMD flags; ‡ contains more 512-bit SIMD
flags; § contains sse4a (128-bit SIMD) and misalignsse flags; • contains the avx512vnni flag

3.1 Influences when inferring on CPUs

Model outputs computed on CPUs may deviate because of differences in data and task parallelism.
Both affect the aggregation order of convolutions.

Data parallelism Modern architectures feature a variety of SIMD instructions, which affect both
the floating-point accuracy and the aggregation order. While CPUs traditionally compute floating-
point operations at very high precision in the FPU, the introduction of SIMD instructions, such
as SSE and AVX on x86, enables data parallelism at the cost of reduced precision. Newer CPUs
have larger SIMD registers, which allow more flexibility when adjusting the SIMD width (i. e., data
parallelism) and desired precision. Some CPUs support fused multiply-and-add in SIMD [16; 1].

To measure the effect of data parallelism on CPU, we perform inference with the Cifar10-R18
model on all dual-core x86 systems available on GCP, and collect all CPUID flags indicating hard-
ware support of SIMD instructions. Since the number of flags (169) exceeds the number of platfoms,
we cluster flags that always co-occur. Table 1 shows the relation between EQCs and flag clusters.

Observe that a subset of the flag clusters perfectly aligns with the EQCs. Flag clusters 0–3 are all
related to the support for different SIMD capabilities. Flag cluster 0 contains the avx2 flag, denoting
256-bit SIMD support. Flag cluster 1 contains the avx512f flag, indicating an SIMD width of 512
bit. Flag cluster 2 contains four SIMD-related flags: avx512vbmi (vector bit manipulation instruc-
tions), avx512ifma (fused multiply-add for integers), vpclmulqdq (carry-less multiplication), and
avx512vpopcntdq (population count). While the co-occurrence prevents us from attributing the
deviation to a single flag, we consider this evidence to show that some SIMD-related feature is re-
sponsible for the EQC split. Flag cluster 3 contains the sse4a flag not present in the other CPUs, as
well as the misalignsse flag to indicate support for misaligned memory access when using legacy
SIMD instructions. For this EQC, however, the effect of different SIMD support may be superseded
by general architectural differences of AMD processors. Interestingly, no new EQC emerges based
on the support for avx512vnni vector neural-network instructions, indicating that the framework
does not use this hardware feature yet.

Task parallelism Divide-and-conquer algorithms can increase performance and reduce memory
overhead by distributing work to multiple cores [38]. The use of task parallelism involves additional
aggregation steps, the order of which can vary depending on the implementation, e. g., atomic versus
sum–reduce. As work gets distributed on more cores, the individual workload decreases. When the
workload per core becomes too small, data parallelism cannot be used anymore. Figure 2 visual-
izes this effect. When increasing core count from 2 to 4, the additional 512-bit SIMD capabilities
of the Intel Ice Lake platform become unusable, producing the same outputs as Intel Sky-/Cascade
Lake. Going from 8 to 16 cores makes the per-core workload too small for 256-bit SIMD instruc-
tions, resulting in a single EQC for all Intel platforms newer than Ivy/Sandy Bridge. We did not
observe additional EQC collapses for core counts larger than 16. Both the Intel Sandy/Ivy Bridge
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Figure 2: Deviations disappear as the number of CPU cores increases.

and the AMD Rome/Milan architectures have sufficiently different SIMD capabilities (cf. Table 1)
to produce deviations even for larger core counts.

3.2 Influences when inferring on GPUs

The choice of convolution algorithm is a cause of deviations on GPUs. Due to different performance
characteristics, there is no universally best convolution algorithm [6]. Modern GPUs implement a
large number of convolution algorithms, and select the fastest algorithm for the convolution param-
eters (number of filters, stride, etc.) at runtime based on microbenchmarks.3 Therefore, the final
algorithm choice may not only vary with the GPU and model architecture, but also with the remain-
ing hardware and even uncontrollable conditions, like bus contention and parallel load. As each
convolution is benchmarked separately, different layers of a model can use different algorithms.

Deviations between GPUs We perform inference with the Cifar10-R18 model on all GPUs
available on GCP and locally. Using the TensorFlow profiler, we log all function calls and extract
the convolution algorithms. Internally, the TensorFlow profiler uses the NVidia profiler to record
calls to the CUDA API and some CUDA-internal function calls. A list of all observed convolution
algorithms can be found in Table SUP-4 in the supplementary material.

For the GPUs with deterministic outputs, we can explain the deviations by the use of different ap-
proximate convolution algorithms. Figure 3a shows exemplary traces from the GTX 1650 and RTX
2070 GPUs on our local machines. While 16 different convolution functions were called in our
experiments, we group them by their approach for ease of reading. The lines in Figure 3a plot the
selected algorithm for each convolutional layer of the model. In this case, both GPUs choose the
same algorithm for each of the first 15 convolutions. Convolution 16 is computed with different al-
gorithms, but they happen to produce identical results. This is because the only difference between
explicit and implicit GEMM is the fact that explicit stores the Toeplitz matrix in memory, whereas
implicit GEMM computes it on the fly. The deviations are caused by the final three convolutions,
where the RTX 2070 continues to use implicit GEMM while the GTX 1650 switches back to Wino-
grad. The separation of EQCs is indicated by the dashed vertical line, which we verify by comparing
the intermediate results. We confirm from all other traces that this pattern is typical for deterministic
deviations between GPUs.

Deviations between inferences on the same GPU Microbenchmarks are run just before the first
inference. The framework uses random data to fill a buffer of the problem dimensions and mea-
sures the execution time of all supported convolution algorithms. Since these measurements take up
valuable execution time, each candidate algorithm is timed only once. This makes the choice of the
“winner” susceptible to runtime conditions, e. g., bus contention and memory latency.

To measure variations between inferences, we perform repeated inference with the Cifar10-R18
model. Each inference happens in a new session. We plot the traces obtained with the same profiler
instrumentation. Figure 3b shows the behavior of an NVidia P100 GPU. For 33 inferences on the
same model and data, we observe 6 different paths resulting in 4 EQCs. Observe that up to three
different approaches are used to compute the same convolution (layers 2–5). The leftmost dashed
line provides evidence that the intermediate results differ at that layer and propagate further. Another

3This approach is also called “auto-tuning” in the literature, e. g., [14; 31].
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Figure 3: Choice of convolution algorithm per layer. Function calls are grouped by approach.

separation happens at layer 6, whereas the choice of algorithm at layer 17 does not fork out another
EQC. We confirm from all other traces that this pattern is typical for indeterministic deviations
between GPUs.

The host system of the GPU can also influence the race and thus the number of unique algorithm se-
quences. The red trace in Figure 3a shows one of two unique algorithm sequences for an RTX 2070,
which both lead to one deterministic output. For 33 inferences on the same model and data, we
deterministically observe two EQCs, one for each GPU. We find that the same GPU can produce
different algorithm sequences, resulting in a different number of EQCs on other host systems.

3.3 Model-specific influences

The architecture, parameters, and input dimensions of an ML model can influence the number and
nature of deviations by amplifying or suppressing influences.

Number of multiplications/parameters Numerical deviations are caused by arithmetic opera-
tions, therefore more operations mean potentially more deviations. Both larger inputs and a higher
number of parameters increase the number of computations during inference. Moreover, the prob-
lem dimensions impact the performance of convolution algorithms and affect the algorithm choice.

As deviations arise from rounding errors and different aggregation orders, we hypothesize that more
multiplications per convolution layer lead to more deviations. We investigate this with an ablation
study for the parameters of standard 2-dimensional convolution: kernel size k, number of filters f ,
and input dimensions i × j × c. Our experiment covers several orders of magnitude in the number
of multiplications, ranging from 103 to 108, which is more than the number of multiplications in our
Cifar10-R18 model. For each order of magnitude, we fix k, f and c, and adjust i and j to reach the
desired number of multiplications while aiming for square inputs, i. e., i ≈ j. Figure 4 shows c = 3,
but other values give the same results. Weights are drawn from a uniform distribution over [0, 1).4

Our remaining precision metric (cf. Section 2) measures the magnitude of the deviations. Figure 4a
shows that the remaining precision decreases with the number of multiplications and does not vary
significantly between the platforms (excluding the smallest case k = 2, f = 1, where no deviations
emerge). This is plausible, as approximately Gaussian deviations lead to a lower minimum remain-

4This does not affect results, as discussed in the “Parameter and input distribution” paragraph of Section 3.5.

6



103 104 105 106 107 108

Multiplications

5

10

15

20

23

R
em

ai
ni

ng
pr

ec
is

io
n k: 2

3
4
5
6
7

f: 1
3

(a) Remaining precision over # of multiplications.

103 104 105 106 107 108

Multiplications

1

2

3

4

N
um

be
ro

fE
Q

C
s

(b) Number of EQCs for the same platforms.

Figure 4: Effect of different convolution dimensions (mapped to the number of multiplications).
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Figure 5: Causes and effects by layer: number of EQCs and remaining precision for Cifar10-R18.

ing precision if more independent realizations are aggregated. The remaining precision drops to 0,
which means that at least one deviation is at least as large as factor 2.

Figure 4b shows the number of equivalence classes as a function of the number of multiplications.
Observe that the relation is not monotonic. Both f = 1 and f = 3 produce more EQCs for 106 to
107 multiplications than for 108. The number of filters seems to have a larger influence than the filter
size. Note that the maximum number of EQCs in this experiment is four, whereas we observe up to
five EQCs for the same set of platforms in our main experiment with complete models. We interpret
this as evidence that deviations propagate between layers and may produce forks into different EQCs
in later layers.

Architecture and layer types The model architecture defines the operations and hence determines
if a cause of deviation is present or not. In particular, convolutional and other parallel data processing
layers tend to introduce deviations. Layers that aggregate results and reduce information, such as
pooling layers, may reduce or eliminate deviations from preceding layers. This extends to activation
functions. Continuous functions that preserve information (e. g., sigmoid and softmax) can maintain
or potentially amplify deviations. Functions that reduce information, like the rectified linear unit
(ReLU), can have a diminishing effect on deviations. This means that a sufficiently large model can
introduce deviations in earlier layers, and remove them in pooling and activation layers. Skip layers
can preserve deviations by bypassing information reduction.

To investigate the influence of different layer types in a full inference computation, we instrument a
model to output the intermediate results of all layers in addition to the final class label. We verify
that this does not alter the EQCs. Figure 5 plots the number of EQCs as well as the remaining
precision over the outputs of the 60 layers of Cifar10-R18. Note that activations count as distinct
layers, marked with a thick dark-red tick, and not every convolution is immediately followed by
an activation. The annotated segments on the x-axis refer to the ResNet convention of bundling
convolutions of the same size into segments [15].

The remaining precision changes after every layer. This can be explained by the fact that the very
first convolution following the input layer already produces deviations that result in multiple EQCs.
As long as more than one EQC exists (i. e., for all remaining layers), the remaining precision indi-
cates how far these EQCs fall apart in the most extreme case. In terms of magnitude, the remaining
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precision never reaches zero. This corroborates the results of our ablation study (cf. Figure 4a) as
the maximum number of multiplications per layer is in the order of 106. Although the number of to-
tal multiplications increases monotonically, the ReLU activations increase the remaining precision,
visible as peaks of the remaining precision. One instance of aggregation is very pronounced at the
rightmost layer, where the output is projected to a small label space.

Turning to the number of EQCs, new ones only emerge as outputs of convolutional and batch nor-
malization layers. The number of EQCs tends to increase over the execution of the model. However,
we also observe a reduction in the number of EQCs, which occurs once in a convolutional layer
(conv2d_14) in the third segment of the model. We did not expect to sees this, in particular given
that this layer does not perform any quantization or aggregation. This shows that past deviations may
be cancelled out. Another unexpected finding is the emergence of the fourth EQC, which occurs in
a batch normalization layer (batch_norm_1), and deviations arise in layers other than convolution.

3.4 Influence of floating point precision

Figure 6 shows how casting a trained model to a different floating-point precision affects deviations.
The figure shows similarities between the EQCs as dendrograms, with remaining precision used as
distance metric. Branch lengths within the dendrograms are proportional to the remaining preci-
sion between the EQCs, and connections further to the right indicate higher remaining precision.
Branches extend past the maximum remaining precision of the format to indicate platforms that
produce identical outputs and thus are in the same EQC.
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(a) Half precision: 3 EQCs.
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(b) Single precision: 9 EQCs.
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(c) Double precision: 4 EQCs.

Figure 6: Influence of casting the Cifar10-R18 model to different floating-point precisions. Both
half (float16) and double precision (float64) floating-point numbers generate fewer deviations than
single precision. The same pattern holds for all models, cf. Section E in the supplementary material.

Rounding to IEEE-754 16-bit half-precision (float16) suppresses deviations and reduces the num-
ber of EQCs. However, which EQCs fall together seems rather chaotic in our experiments. For
example, AMD Rome processors fall into all three EQCs, depending on their core count. Reducing
precision thus mitigates deviations, but in potentially unpredictable ways. Alternatively, the model
can be converted to fixed point integer arithmetic, which reportedly eliminates all deviations [34].

Interestingly, increasing precision also reduces the number of EQCs. While we observe a total of
four different EQCs when inferring with our model in 64-bit double precision, this is still fewer than
for 32-bit single precision. As we simply cast the model to the higher precision without modifying
the weights, the lower part of the 64-bit mantissas are zero. This provides more room for shifting
and prevents swamping to some extent. Platforms from different EQCs for 32 bit match for 64
bit according to their core count, indicating that deviations due to task parallelism persist. We
conjecture that zeroing the last n mantissa bits has the same effect, reducing the performance cost
of the mitigation measure at the cost of reduced fidelity.

3.5 Potential influences not observed in experiments

Our research identified a number of potential influences that did not surface in isolated experiments.
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Compute graph optimization Recent approaches go beyond optimized algorithms and instead
transform the operations and their ordering (the compute graph) [23]. For example, the Accelerated
Linear Algebra (XLA) project is a JIT compiler for ML operations [39]. The resulting compute
graph is specific to the hardware [34]. It determines if and how deviations caused in the hardware
come to effect. XLA is not yet used by default [39]. As we did not activate it, we can rule out special
compute-graph optimizations as cause for deviations.

Device placement Most ML frameworks allow running operations on both CPU and GPU. In
theory this lets them choose the target device at runtime. Under certain conditions, the framework
may decide to execute operations on the CPU even though a GPU is available [37]. Since CPU
and GPU implementations very likely differ in algorithm, floating-point precision, and aggregation
order, the device placement can cause deviations. We log the device placement in our experiments
and verify that EQCs do not change with our instrumentation.

Race conditions Task-parallel execution can lead to different aggregation orders depending on the
implementation. If all intermediate results are stored in an array and then summed up (e. g., with
sum–reduce), the execution time of individual tasks will not change the aggregation order. However,
if the results are summed up immediately, with some sort of locking mechanism, the execution time
of individual tasks determines the aggregation order. In our experiments, all model outputs on CPUs
and GPUs are consistent and deterministic when controlling for the influences we discovered, ruling
out race conditions as causes of deviations.

Parameter and input distributions The distributions of model parameters and input values can
both affect the shape and magnitude of deviations. To measure their influence, we first extract the
conv2d_11 layer from our Cifar10-R18 model and capture its intermediate input during a forward
pass. Then, we perform inference on twelve combinations of input and parameter distributions on
all dual-core GCP instances. We use the original weights, weights drawn from the Glorot uniform
distribution [12], and weighs drawn from a Gaussian with µ = −0.019, σ = 0.226, fitted to the
trained weights. For the inputs we use the captured values, two random permutations of these values
(preserving the marginal distribution), and random inputs drawn uniformly from [0, 1). The EQCs
for all cases are identical. This suggest that the emergence of EQCs is independent of the parameter
and input distribution. Incidentally, the microbenchmarks for algorithm choice on GPUs make a
similar assumption. Their inputs are filled with random data.

4 Discussion

Impact The deviations we observe might impair ML reproducibility and security. Concerning
reproducibility, as different platforms can produce different outputs from the exact same model and
input data, it is unlikely that high-precision numerical results can be reproduced exactly. Assertions
in automated software tests are prone to fail on specific hardware. Such limitations to reproducibility
are not always visible in headline indicators because classifier performance is typically measured on
the level of labels. The deviations we study rarely cause label flips for natural inputs. However, we
have demonstrated in [35] that label flips can be provoked by searching for synthetic inputs that map
to the space between decision boundaries of different platforms. Moreover, Casacuberta et al. [8]
point out that numerical deviations can undermine security guarantees of ML implementations with
differential privacy. Differences between symbolic math and actual floating-point computations at
limited precision have been used to fool ML verifiers [42; 17]. Varying algorithm choices break these
assumptions even further, as they fundamentally change the type and order of arithmetic operations.
These examples highlight the security impact of our observation. Our study of causes breaks ground
for a principled approach to assess and mitigate these risks.

Federated learning distributes ML training tasks over many machines under the assumption of com-
patible gradients. The systematic deviations observed here call for robustness checks when com-
bining gradients from heterogeneous hardware [7; 25]. The fact that deviations leave traces of the
executing hardware enables forensicability and attribution of ML outputs [34]. This could be used,
e. g., in the combat against harmful generated content; but can also be misused, e. g., for unautho-
rized surveillance. This adds a new aspect to the debate on societal and ethical aspects of ML.
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Mitigation strategies As shown in Figure 6, quantization can suppress deviations and reduce the
number of EQCs. However, these measures do not mitigate deviations due to algorithm choice, and
thus are not applicable to GPUs. While researchers can instruct the ML framework to use deter-
ministic implementations of operators,5 the fact that different GPUs support different algorithms
can lead to deviations even when such options are set. Similarly, TensorCores [28] may be used if
available, which can also lead to deviations. While they can be disabled, their use cannot be en-
forced. Reaching full reproducibility requires giving researchers access to low-level functionalities
and providing them with fine-grained control over optimizations. Another approach is to sidestep
platform-specific optimizations at runtime by transforming the model into a flat compute graph.
TFLite, for example, does this by default; yet for the purpose of a smaller memory footprint rather
than consistency.

While all these strategies are heuristic, developers of future ML frameworks and accelerator libraries
should consider supporting an option for fully deterministic and consistent computation. This comes
almost unavoidably at the cost of lower performance. Cryptographic libraries, for example, went a
similar path when constant-time options were added in response to the discovery of side-channel
attacks [20]. In both domains, successful mitigation depends on exact knowledge of the entire stack
down to the hardware.

Limitations While our work covers a lot of ground concerning numerical deviations, there are
still some areas for further exploration. Our experiments have intentionally kept some factors con-
stant: the versions of TensorFlow (2.5.0), all dependent libraries and drivers, the compiler version
and options used to build TensorFlow, as well as the concurrent load on the system besides our
experiments. Additional layer types and other frameworks can also be subject to follow-up work.

5 Conclusion

Performing inference on the same trained model and input data is not always consistent across plat-
forms, and sometimes not even deterministic on the same platform. This paper explores the causes
for the numerical deviations, in particular in convolution operations. They include the choice of
the specific convolution algorithm, the floating-point precision, and the order of aggregation. The
order of aggregation is defined by SIMD capabilities and the number of cores of the executing CPU.
As the number of CPU cores grows, task parallelism can supersede the deviations caused by SIMD
capabilities. GPUs use microbenchmarks to select the fastet supported convolution algorithm at run-
time. We find that this can produce seemingly indeterministic behavior when different algorithms
are chosen in different sessions. We validate our findings on 75 platforms, including CPUs and
GPUs, hosted locally and on two large commercial cloud platforms. Our measurement infrastruc-
ture, which is made available on GitHub,6 can facilitate future comparative studies. Our analysis
offers a number of mitigation strategies, but certain deviations appear unavoidable at present. These
findings imply that authors interested in improving reproducibility should meticulously document
specifics of the computation hardware, in addition to the amount of compute [27], and provide high-
precision intermediate results as reference points for replication attempts.
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A Detailed results

Table SUP-1 shows the CPU EQCs in full detail, including information on hardware, model, and
input. Table SUP-2 shows the same information for GPUs. This data is the source for Figure 1 in
the main paper.

Table SUP-3 lists all observed CPU flags and their corresponding cluster index. Some flags were
present on all machines, and were thus filtered from Table 1 in the main paper. These are marked
with C, for common.

B Methodology

Our experiments require instrumentation at various levels of the ML software stack, shown in Fig-
ure SUP-1. The interfaces to the ML framework use different programming languages. Parts of the
stack are not accessible for analysis (e. g., microcode on CPUs, vendor libraries for GPUs).

Information extraction We captured as much information about the entire inference pipeline as
possible, using TensorFlow’s own profiler. It includes underlying tools like NVidia’s nvprof pro-
filer, and allows us to investigate function calls in the accelerator libraries. Information about the
computing devices is taken from /proc/cpuinfo and the TensorFlow device information, respec-
tively. For CPUs we fill the microarchitecture field by cross-referencing the family and model
fields of the CPUID. GPUs are uniquely identifiable by their names, including the microarchitec-
ture. Device names are given with as much detail as provided by the machine; due to shared tenancy,
device information for cloud CPUs may be reported with less detail. Memory sizes are taken from
the psutil Python module for CPUs, and from the TensorFlow reported memory_limit for GPUs.

Containerization To ensure that the same experiments are run on a large number of cloud in-
stances, we use Docker to fix the software environment and package versions. The Docker image is
built locally and uploaded to image registries of both cloud providers used. From there, the image is
pulled to the respective target machines and used to run the experiments.

Our experiments run in a Docker container based on the tensorflow:2.5.0-gpu image. This
image runs Python version 3.6.9, and we additionally install clang version 6.0.0. The TensorFlow
version is 2.5.0. In this version, XLA is not enabled by default, and was not explicitly activated.
The container already handles the GPU setup, and no additional steps are necessary. For the cloud
instances with GPUs, we forward them to the container using Docker’s --gpus flag.
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Table SUP-1: Full results for CPU instances. EQCs are assigned increasing integers from top to
bottom. Table cells identical with their left neighbor are slightly faded. CPUs are separated into
CPU classes (CCs) based on available x86 extensions and clustered core count. The first occurrence
of an EQC per column is marked in bold.

Dataset CIFAR-10 DeepWeeds

Model size Small Medium Large

Sample index 0 1 6 0 1 6 0 1 6

Vendor Cores Generation Device name Mem. Cloud CC

(1) AMD 2 Milan 7B13 7.8 GCP 0 1 1 1 1 1 1 1 1 1
AMD 2 Rome 7B12 7.8 GCP 0 1 1 1 1 1 1 1 1 1
AMD 4 Milan 7B13 15.6 GCP 1 1 1 1 2 2 2 2 2 2
AMD 4 Rome 7B12 15.6 GCP 1 1 1 1 2 2 2 2 2 2
AMD 8 Milan 7B13 31.4 GCP 2 1 1 1 3 3 3 3 3 3

(6) AMD 8 Rome 7B12 31.4 GCP 2 1 1 1 3 3 3 3 3 3
AMD 16 Milan 7B13 62.8 GCP 3 1 1 1 4 4 4 4 4 4
AMD 16 Rome 7B12 62.8 GCP 3 1 1 1 4 4 4 4 4 4
AMD 32 Milan 7B13 125.9 GCP 4 1 1 1 4 4 4 5 5 5
AMD 32 Rome 7B12 125.9 GCP 4 1 1 1 4 4 4 5 5 5

(11) Intel 2 Sandy Br. Xeon 7.3 GCP 5 2 2 2 5 5 5 6 6 6
Intel 2 Ivy Br. Xeon 7.3 GCP 5 2 2 2 5 5 5 6 6 6
Intel 2 Haswell Xeon 7.3 GCP 6 1 1 1 6 6 6 7 7 7
Intel 2 Haswell E5-2676 3.8 AWS 6 1 1 1 6 6 6 7 7 7
Intel 2 Broadwell Xeon 7.3 GCP 6 1 1 1 6 6 6 7 7 7

(16) Intel 2 Broadwell E5-2686 7.8 AWS 6 1 1 1 6 6 6 7 7 7
Intel 2 Skylake 8175M 15.3 AWS 7 3 3 3 7 7 7 8 8 8
Intel 2 Skylake Xeon 7.8 GCP 7 3 3 3 7 7 7 8 8 8
Intel 2 Skylake Xeon 7.3 GCP 7 3 3 3 7 7 7 8 8 8
Intel 2 Skylake 8175M 7.5 AWS 7 3 3 3 7 7 7 8 8 8

(21) Intel 2 Skylake 8259CL 7.6 AWS 7 3 3 3 7 7 7 8 8 8
Intel 2 Skylake 8259CL 15.3 AWS 7 3 3 3 7 7 7 8 8 8
Intel 2 Skylake 8259CL 7.7 AWS 7 3 3 3 7 7 7 8 8 8
Intel 2 Skylake 8151 15.3 AWS 7 3 3 3 7 7 7 8 8 8
Intel 2 Ice Lake Xeon 7.8 GCP 8 3 3 3 8 8 8 8 8 8

(26) Intel 4 Sandy Br. Xeon 14.7 GCP 9 2 2 2 9 9 9 6 6 6
Intel 4 Ivy Br. Xeon 14.7 GCP 9 2 2 2 9 9 9 6 6 6
Intel 4 Haswell E5-2666 7.3 AWS 10 1 1 1 10 10 10 7 7 7
Intel 4 Haswell Xeon 14.7 GCP 10 1 1 1 10 10 10 7 7 7
Intel 4 Haswell E5-2676 15.6 AWS 10 1 1 1 10 10 10 7 7 7

(31) Intel 4 Haswell E7-8880 119.9 AWS 10 1 1 1 10 10 10 7 7 7
Intel 4 Broadwell Xeon 14.7 GCP 10 1 1 1 10 10 10 7 7 7
Intel 4 Skylake 8124M 7.4 AWS 11 3 3 3 11 11 11 8 8 8
Intel 4 Skylake 8275CL 7.5 AWS 11 3 3 3 11 11 11 8 8 8
Intel 4 Skylake 8124M 9.9 AWS 11 3 3 3 11 11 11 8 8 8

(36) Intel 4 Skylake Xeon 15.6 GCP 11 3 3 3 11 11 11 8 8 8
Intel 4 Skylake Xeon 14.7 GCP 11 3 3 3 11 11 11 8 8 8
Intel 4 Ice Lake Xeon 15.6 GCP 12 3 3 3 11 11 11 8 8 8
Intel 8 Sandy Br. Xeon 29.4 GCP 13 2 2 2 12 12 12 6 6 6
Intel 8 Ivy Br. Xeon 29.4 GCP 13 2 2 2 12 12 12 6 6 6

(41) Intel 8 Haswell Xeon 29.4 GCP 14 1 1 1 13 13 13 7 7 7
Intel 8 Broadwell Xeon 29.4 GCP 14 1 1 1 13 13 13 7 7 7
Intel 8 Skylake Xeon 31.4 GCP 15 3 3 3 14 14 14 8 8 8
Intel 8 Skylake Xeon 29.4 GCP 15 3 3 3 14 14 14 8 8 8
Intel 8 Coffee Lake i7-9700 31.2 local 16 1 1 1 13 13 13 9 9 9

(46) Intel 8 Coffee Lake E3-1270 31.3 local 16 1 1 1 13 13 13 9 9 9
Intel 8 Ice Lake Xeon 31.4 GCP 17 3 3 3 14 14 14 8 8 8
Intel 12 Ivy Br. i7-4930K 62.8 local 18 2 2 2 15 15 15 10 10 10
Intel 12 Ivy Br. i7-4930K 3.8 local 18 2 2 2 15 15 15 10 10 10
Intel 16 Sandy Br. Xeon 58.9 GCP 19 2 2 2 15 15 15 11 11 11

(51) Intel 16 Ivy Br. Xeon 58.9 GCP 19 2 2 2 15 15 15 11 11 11
Intel 16 Haswell Xeon 58.9 GCP 20 1 1 1 16 16 16 12 12 12
Intel 16 Broadwell Xeon 58.9 GCP 20 1 1 1 16 16 16 12 12 12
Intel 16 Skylake Xeon 62.8 GCP 21 3 3 3 16 16 16 13 12 13
Intel 16 Skylake Xeon 58.9 GCP 21 3 3 3 16 16 16 13 13 13

(56) Intel 16 Ice Lake Xeon 62.8 GCP 22 3 3 3 16 16 16 13 13 13
Intel 32 Sandy Br. Xeon 117.9 GCP 23 2 2 2 15 15 15 14 14 14
Intel 32 Ivy Br. Xeon 117.9 GCP 23 2 2 2 15 15 15 14 14 14
Intel 32 Haswell Xeon 117.9 GCP 24 1 1 1 16 16 16 15 15 15
Intel 32 Broadwell Xeon 117.9 GCP 24 1 1 1 16 16 16 15 15 15

(61) Intel 32 Skylake Xeon 125.9 GCP 25 3 3 3 16 16 16 16 16 16
Intel 32 Skylake Xeon 117.9 GCP 25 3 3 3 16 16 16 16 16 16
Intel 32 Ice Lake Xeon 125.8 GCP 26 3 3 3 16 16 16 16 16 16
Intel 48 Skylake 8275CL 92.2 AWS 25 3 3 3 16 16 16 16 16 16
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Table SUP-2: Full results for GPU instances. EQCs are assigned increasing integers from top to
bottom. Table cells identical with their left neighbor are slightly faded. The first occurrence of an
EQC per column is marked in bold. Cells marked with an asterisk (*) indicate that indeterminsm
was observed. The equivalence class is based on the most frequently observed output.

Dataset CIFAR-10 DeepWeeds

Model size Small Medium Large

Sample index 0 1 6 0 1 6 0 1 6

Vendor Generation Device name Cloud

NVidia Kepler K80 GCP 1 1 1 1* 1* 1* 1 1 1
NVidia Maxwell GTX 970 local 2* 2 2 2 2 2* 2 2 2
NVidia Maxwell GTX 980 local 3* 3 3 3 3 3 3 3 3
NVidia Maxwell M60 AWS 3 3 3 3* 4 4* 4 4 4

(5) NVidia Pascal P100 GCP 4* 4* 4* 4* 5* 5* 5 5 5
NVidia Volta V100 GCP 5* 5* 5* 5* 6* 6* 6* 6* 6*
NVidia Turing GTX 1650 local 6 6 6 6 7 7 7 7 7
NVidia Turing RTX 2070 local 7 7 7 7 8 8* 8 8 8
NVidia Turing T4 AWS 7* 7* 7* 8 9 9 9* 9* 9

(10) NVidia Turing T4 GCP 7 7 7 8* 9* 9 9* 9* 9*
NVidia Ampere A100 GCP 8 8 8 9 10* 10* 10* 10* 10*

To ensure a clean tensor graph for each experiment, we create a new Python session for each infer-
ence. To this end we create a small CLI application that takes the model name and input path as
arguments and computes the inference inside the container.

Dead ends In additional but eventually unsuccessful steps, we aimed to fully understand the paths
taken during execution by instrumenting TensorFlow with the gdb debugger, as well as the perf
and valgrind profiling tools. We specifically hoped that valgrind’s [7] cachegrind tool would
provide insight into the actual code executed on CPU, but the tremendous amount of inlining in
TensorFlow’s codebase yielded no usable results. Outputs from perf were too noisy to be useful.
TensorFlow’s codebase was too large for gdb [12] analysis to be useful, both in interactive and
automated scenarios. The record-and-replay debugger rr [9] could not deal with the complexities
of TensorFlow’s codebase and could not successfully record a single inference.

C Convolution algorithms and functions

We summarize the main approaches for computing convolutions.

General matrix multiplication (GEMM) Convolution can be calculated via matrix multiplica-
tion by extracting the relevant parts of the image into a Toeplitz matrix, replicating the filter as
needed, and multiplying the two matrices. This is equivalent to an unrolled loop variant of the naive
implementation with data replication for better access [1]. Even with data structures optimized
for sparse matrices, the Toeplitz matrix has many duplicate entries, producing significant memory
overhead. A divide-and-conquer alternative reduces the memory overhead by utilizing the fact that
matrices are stored in memory as contiguous 1-dimensional arrays [1]. The full convolution is split
into multiple smaller convolutions, and the results are reconstructed afterwards. The divide-and-
conquer approach causes a different order of aggregations, which can lead to numerically different
results.

Winograd algorithm Winograd short convolution [3] is a fast convolution algorithm that trans-
forms both inputs and filters to achieve a lower number of multiplications. Its transformation is
inherently lossy and involves multiple rounding steps. The Winograd algorithm exists in fused
and non-fused variants. The fused variant performs transformation, point-wise multiplication, and
inverse transformation in a single step, reducing the number of memory accesses, whereas the non-
fused variant performs all steps separately.
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Table SUP-3: Full list of CPU flags in alphabetical order and their corresponding cluster index.
Flags with cluster index C (common) are present on all CPUs and are not show in the original table.

Flag Cluster Flag Cluster Flag Cluster

3dnowext 3 fma 0 pse36 C
3dnowprefetch 7 fpu C pti 14
abm 0 fsgsbase 10 rdpid 3
adx 7 fxsr C rdrand 10
aes C fxsr_opt 3 rdrnd 10
apic C gfni 2 rdseed 7
arat C hle 11 rdtscp C
arch_capabilities 4 ht C rep_good C
avx C hypervisor C rtm 11
avx2 0 ibpb C sep C
avx512_bitalg 2 ibrs C sha 6
avx512_vbmi2 2 ibrs_enhanced 8 sha_ni 6
avx512_vnni 8 invpcid 12 smap 7
avx512_vpopcntdq 2 invpcid_single 12 smep 10
avx512bitalg 2 lahf_lm C ss 4
avx512bw 1 lm C ssbd C
avx512cd 1 mca C sse C
avx512dq 1 mce C sse2 C
avx512f 1 md_clear 4 sse4_1 C
avx512ifma 2 misalignsse 3 sse4_2 C
avx512vbmi 2 mmx C sse4a 3
avx512vbmi2 2 mmxext 3 ssse3 C
avx512vl 1 movbe 0 stibp C
avx512vnni 8 mpx 13 syscall C
avx512vpopcntdq 2 msr C topoext 3
bmi1 0 mtrr C tsc C
bmi2 0 nonstop_tsc C tsc_adjust C
clflush C nopl C tsc_known_freq C
clflushopt 5 npt 3 umip 6
clwb 5 nrip_save 3 vaes 2
clzero 3 nx C vme C
cmov C osvw 3 vmmcall 3
cmp_legacy 3 osxsave C vpclmulqdq 2
constant_tsc C pae C x2apic 4
cpuid C pat C xgetbv1 5
cr8_legacy 3 pcid 9 xsave C
cx16 C pclmulqdq C xsavec 5
cx8 C pdpe1gb C xsaveerptr 3
de C pge C xsaveopt C
erms 9 pni C xsaves 1
extd_apicid 3 popcnt C xtopology 4
f16c 10 pse C
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Figure SUP-1: Visualization of the ML software stack. Instrumentation and tools shown in red.

Fourier transformation approaches Approaches using fast Fourier transformation (FFT) exploit
the fact that spatial convolution is equivalent to point-wise multiplication in the frequency domain.
As FFT is also used in many other contexts, especially in signal processing, optimized implementa-
tions are commonly available. The transformation to and from the frequency domain is inherently
lossy for finite numerical precision [6].

Most algorithms come in two major variants: an explicit variant, where precomputations happen in
a separate step, and an implicit variant, where precomputations happen right in the algorithm (e. g.,
input replication for the im2 algorithm). In addition to the above mentioned algorithms, modern
GPUs also include special hardware to compute convolution directly [8]. The performance of the
above algorithms varies with the use case. Table SUP-4 compares advantages and disadvantages of
each approach based on the literature [2].

D Datasets and preprocessing

We use the CIFAR-10 [5] and Deep Weeds [10] datasets for our experiments, both obtained from the
tensorflow_datasets Python package. CIFAR-10 has ten classes and consists of 50 000 training
and 10 000 test samples. Deep Weeds has nine classes and consists of 17 509 samples, which we
split into training (first 85 %) and test set (final 15 %). We transform all samples from their integer
range [0, 255] to floating-point numbers in the range [0, 1] by dividing by 255. All training and test
sets are shuffled using the TensorFlow dataset.shuffle function with a buffer size of the entire
dataset, and random seed 42. We batch the samples with a batch size of 32 for all datasets.

Table SUP-5 provides a summary of all models used in this paper.

For CIFAR-10 we use a small custom CNN with two convolutional layers (similar to the VGG
architecture [11]), a ResNet18, and a ResNet50v2 [4] followed by a flatten and dense layer with the
required 10 neurons and softmax activation. The small custom CNN is documented in Table SUP-6.
For Deep Weeds we use the pre-trained model provided by the authors at https://github.com/
AlexOlsen/DeepWeeds.

Training The CIFAR-10 models are trained for 30 epochs. The entire training set is used for every
epoch. The models were trained on an RTX 3080 GPU.
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Table SUP-4: Overview of convolution algorithms. Characteristics based on [2].

Approach Time Memory Strided Generation Name

direct loop − ++ ++ Volta fused conv/ReLU
grouped naive kernel

GEMM + −− / + ++ / −− Ampere implicit
Kepler GEMM
generic explicit single precision
generic implicit
generic precomputed

Winograd ++ − − Ampere Winograd
Maxwell Winograd
Maxwell non-fused

Turing non-fused
Volta compiled
Volta non-fused

FFT − + FFT GEMM

Table SUP-5: Summary of models used.
Parameters

Dataset ResNet[4] Convolution layers Total Test set set accuracy

CIFAR-10 [5] 18 11,170,816 11,191,306 60 %
DeepWeeds [10] 50v2 23,556,608 24,744,457 95 %
CIFAR-10 Cifar10-small Custom (cf. Table SUP-6) 464 59,354

Table SUP-6: Summary of model Cifar10-small. ReLU activation and max pooling are used
except for the experiments in Section E.

Layer name Layer type Output shape # params

input InputLayer 32× 32× 3 0
conv2d Conv2D 32× 32× 3 84
activation Activation 32× 32× 3 0
pooling2d Pooling2 16× 16× 3 0
conv2d_1 Conv2D 16× 16× 5 380
activation Activation 32× 32× 3 0
pooling2d_1 Pooling2 8× 8× 5 0
flatten_1 Flatten 320 0
dense_1 Dense 128 41088
dense_2 Dense 128 16512
dense_3 Dense 10 1290
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Evaluation The Deep Weeds model reaches 95 % accuracy on the test set, as reported in the
original paper [10]. For CIFAR-10, model Cifar10-small reaches 53.18 % accuracy, and the
Cifar10-R18 reaches 60.25 % accuracy. These accuracies are not competitive with the state of
the art, but sufficiently better than random guessing. We can safely assume that the kernels learn
meaningful weights.

Experiment samples We process three samples for each of our models to measure the consistency
of our results. The first sample is the first test sample (for simplicity); we additionally use a sample
from a different class (sample index 1 for CIFAR-10, and index 6 for Deep Weeds), a sample from
the same class as the first sample is also used (index 6 for CIFAR-10, and index 1 for Deep Weeds).
All sample indexes refer to the unshuffled test set of the respective dataset.

E Experiments supporting the rebuttal and author response phase

Switching precision for all models

Request: “Maybe other Neural Networks could be tested to see if they follow the same pattern for
single-point precision.”

We repeat the experiments producing Figure 6 in the main paper for both the Cifar10-small and
DeepWeeds-R50v2 models. Results for Cifar10-small are shown in Figure SUP-2, and results
for DeepWeeds-R50v2 are shown in Figure SUP-3. The figures are structured in the same way as
Figure 6 in the main paper.
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(a) Half precision: 1 EQC.
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(b) Single precision: 3 EQCs.
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(c) Double precision: 2 EQCs.

Figure SUP-2: Influence of casting the Cifar10-small model to different floating-point precisions.
Both half and double precision floating-point generate fewer deviations than single precision.
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(b) Single precision: 7 EQCs.
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(c) Double precision: 4 EQCs.

Figure SUP-3: Influence of casting the DeepWeeds-R50v2 model to different floating-point preci-
sions. Both half and double precision floating-point generate fewer deviations than single precision.
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Table SUP-7: Validation accuracy of modified models used for Figures SUP-4 and SUP-5.
Model name Activation Pooling Validation accuracy

Cifar10-R18 Sigmoid AvgPool 47.7 %
Cifar10-small Sigmoid AvgPool 54.6 %
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Figure SUP-4: Influence of activation and pooling functions for ResNet-18 architecture. Activation
layers are indicated on the x-axis by red upward-facing arrows; pooling layers are indicated by
blue downward-facing arrows. Model variants with sigmoid activation use Xavier initialization
(glorot_uniform).

Again, the number of EQCs is largest for single precision, and decreases for both half and double
precision. The distribution of EQCs for single precision is similar to the Cifar10-R18 model.
Changes for double precision are less clear cut, and CPUs with different core counts fall into the
same EQC. We conclude that the pattern of EQCs is similar for all models: single precision generates
the most EQCs, and half and double precision generate fewer EQCs, but still more than one.

Weight distribution and stable remaining precision

Request: “can the authors try Xavier initialization + sigmoid activation (instead of He + ReLU in
typical Resnet) or replace MaxPool to MeanPool to see if this behavior still holds. This should tell
which is the cause of non-diminishing remaining precision.”

To answer this question we modify models Cifar10-small and Cifar10-R18 to use sigmoid
activation with Xavier initialization for all activation layers. MaxPool layers are replaced with
AvgPool1 layers. The resulting models are trained for 30 epochs on the CIFAR-10 training set,
using the same code as the ReLU models. No tuning of hyperparameters is performed. Table SUP-7
reports the final validation accuracy of the models. As with the ReLU models, this is not competitive
with the state of the art, but significantly better than random guessing. Figures SUP-4 and SUP-5
show the results for the modified models. Because the reviewer specifically mentions the initializa-
tion we include an untrained version of the model in the results, shown in Figures SUP-6 and SUP-7

We follow the same experimental procedure as in Section 3.3 in the paragraph “Architecture and
layer types” to obtain the remaining precision and number of EQCs. Figure SUP-4 show the results
for model Cifar10-R18. The tick marks indicating the activation layers have been replaced by red
upward-facing arrows. Blue downward-facing arrows indicate pooling layers.

The remaining precision for ReLU activation in Figure SUP-4 is the same as in Figure 5 in the
main paper, and activation layers either increase the remaining precision or leave it unaffected. In
contrast, the first and last sigmoid activation layers decrease the remaining precision. The remaining
sigmoid activation layers also either increase the remaining precision or leave it unaffected, same as
the ReLU activation layers.

The single pooling layer after the first convolution increases the remaining precision for both
MaxPool and AvgPool. The number of EQCs is the same for both variants of the model, and is
not shown to save space.

1We stay consistent with TensorFlow naming and refer to MeanPool as AvgPool.
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Figure SUP-5: Influence of activation and pooling functions for Cifar10-small (cf. Table SUP-
6). Activation layers are indicated on the x-axis by red upward-facing arrows; pooling layers are
indicated by blue downward-facing arrows. Model variants with sigmoid activation use Xavier
initialization (glorot_uniform).
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Figure SUP-6: Variant of Figure 5 of the main paper, with initialized weights and no training.
Sigmoid uses Xavier initialization, ReLU uses He. Linear uses initialized weights of the sigmoid
model.

Figure SUP-5 shows the results for model Cifar10-small, which features a second pooling layer.
The figure is structured the same way as Figure SUP-4. For the Cifar10-small model, sigmoid
activation reduces the remaining precision in three out of four cases. MaxPool increases the remain-
ing precision for both layers, whereas AvgPool increases it for one and leaves it unaffected for the
other.

Because the reviewer explicitly mentioned activation functions, we also include a variant of the
graphic with initialized weights and no training, shown in Figure SUP-6 for the Cifar10-R18
model, and in Figure SUP-7 for the Cifar10-small model. Remaining precision for the
Cifar10-R18 model without training fluctuates across the entire possible range [0, 23]. A remaining
precision of 23 indicates only a single EQC. The EQC plot in Figure SUP-6b shows that even after
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Figure SUP-7: Variant of Figure SUP-5 with initialized weights and no training. Methodology is
identical to Figure SUP-6.

Table SUP-8: Number of deviations before and after activation layers in Cifar10-R18 and
Cifar10-small. Deviations are counted over the flattened output of the layer, and averaged across
used in Tables SUP-1 and SUP-2. A value deviates if it is not identical for all hardware platforms.

Model name Deviations
ReLU Sigmoid

Layer index Before After Before After

Cifar10-R18
5 95.3 % 38.4 % 94.1 % 79.5 %
9 97.5 % 34.6 % 97.7 % 87.8 %
12 98.5 % 33.8 % 89.9 % 80.8 %
18 99.3 % 49.7 % 99.5 % 91.7 %
23 98.6 % 43.1 % 98.4 % 88.2 %
26 97.9 % 35.2 % 96.4 % 87.9 %
32 97.9 % 47.2 % 98.5 % 91.8 %
37 93.9 % 43.3 % 93.1 % 70.8 %
40 75.6 % 30.8 % 19.9 % 7.2 %
46 90.8 % 61.0 % 96.5 % 96.0 %
51 71.4 % 54.8 % 97.9 % 97.5 %
54 79.9 % 30.1 % 12.5 % 8.9 %

Cifar10-small
2 86.4 % 49.8 % 72.3 % 44.0 %
5 97.0 % 37.6 % 91.7 % 71.2 %
9 96.6 % 26.8 % 82.3 % 63.8 %
11 99.2 % 30.5 % 93.2 % 77.1 %

all EQCs collapse, new EQCs can arise. This implies that similar behavior is possible for trained
weights, and having identical results in intermediate layers does not guarantee identical results in
subsequent layers.

Notably, we find more cases where sigmoid activation increases remaining precision for the un-
trained model. A possible cause for this is the fact that the initialized weights have a lower energy
(sum of values), which causes the sigmoid activation to be closer to its linear regime.

In addition to the figures, we count the ratio of deviating values before and after activation. Ta-
ble SUP-8 shows the results for the trained models.
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Table SUP-9: Number of layers that increase, decrease, or leave the remaining precision unaffected.
Results are averaged over all samples used in Tables SUP-1 and SUP-2.

ReLU Sigmoid

Model name Increase Unaffected Decrease Increase Unaffected Decrease

Cifar10-R18 6.000 6.000 0.000 7.667 2.000 2.333
Cifar10-small 3.000 1.000 0.000 1.000 0.333 2.667

Altering the network’s size

Request: “Was any experiment performed to alter the depth/size of the network under test, to see
if that would impact the probability of a divergence occurring as depth increased?”

There is no experiment that explicitly cuts, shrinks or enlarges middle layers to investigate the ef-
fects. However, the results in Figure 5 were obtained by outputting intermediate layer results, and
the results in Figure 4 can be interpreted as varying the size of a single convolutional layer. Both
figures show clear trends on how the size affects the number of EQCs as well as the remaining pre-
cision. Our analysis of TensorFlow and its underlying Eigen library tells us that actually cutting
the layers would result in the same remaining precision and EQCs as shown in Figure 5 because
implementation choice on CPUs depends only on the hardware and not on the model. On GPUs,
cutting layers will affect these metrics, as early layers will take up memory on the GPU and affect
the microbenchmarks of subsequent layers.

11



References
[1] Andrew Anderson, Aravind Vasudevan, Cormac Keane, and David Gregg. High-performance

low-memory lowering: GEMM-based algorithms for DNN convolution. In Interantional
Symposium on Computer Architecture and High Performance Computing (SBAC-PAD), pages
99–106. IEEE, 2020.

[2] Richard E. Blahut. Fast Algorithms for Signal Processing. Cambridge University Press, 2010.

[3] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions.
Journal of Symbolic Computation, 9(3):251–280, 1990.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–
778. IEEE, 2016.

[5] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The CIFAR-10 dataset. Master’s thesis,
University of Toronto, 2014.

[6] Raimund Meyer. Error analysis and comparison of FFT implementation structures. In Inter-
national Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 888–891.
IEEE, 1989.

[7] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dynamic
binary instrumentation. ACM Sigplan notices, 42(6):89–100, 2007.

[8] NVidia Corporation. NVidia TensorCores. https://www.nvidia.com/en-us/
data-center/tensor-cores/, 2022.

[9] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert Noll, and Nimrod Partush.
Engineering record and replay for deployability. In 2017 USENIX Annual Technical Confer-
ence (USENIX ATC 17), pages 377–389. USENIX Association, 2017.

[10] Alex Olsen, Dmitry A Konovalov, Bronson Philippa, Peter Ridd, Jake C Wood, Jamie Johns,
Wesley Banks, Benjamin Girgenti, Owen Kenny, James Whinney, et al. DeepWeeds: A multi-
class weed species image dataset for deep learning. Scientific Reports, 9(1):1–12, 2019.

[11] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In International Conference on Learning Representations (ICLR), 2015.

[12] Richard Stallman, Roland Pesch, Stan Shebs, et al. Debugging with gdb. Free Software
Foundation, 675, 1988.

12

https://www.nvidia.com/en-us/data-center/tensor-cores/
https://www.nvidia.com/en-us/data-center/tensor-cores/

	Introduction
	Background
	Influences on model outputs
	Influences when inferring on CPUs
	Influences when inferring on GPUs
	Model-specific influences
	Influence of floating point precision
	Potential influences not observed in experiments

	Discussion
	Conclusion
	Detailed results
	Methodology
	Convolution algorithms and functions
	Datasets and preprocessing
	Experiments supporting the rebuttal and author response phase

