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Abstract: For the explainability and interpretability of the outcomes of all forensic investigations, including those in
media forensics, the quality assurance and proficiency testing work performed needs to ensure not only the
necessary technical competencies of the individual practitioners involved in an examination. It also needs to
enable the investigators to have sufficient understanding of machine learning (ML) or ‘artificial intelligence’
(AI) systems used and are able to ascertain and demonstrate the validity and integrity of evidence in the context
of criminal investigations.
In this paper, it is illustrated on the example of applying the multi-class steganalysis tool Stegdetect to find
steganographic messages hidden in digital images, why the explainability and interpretability of the outcomes
of media forensic investigations are a challenge to researchers and forensic practitioners.

1 INTRODUCTION

Forensic procedures in many domains, but especially
in media forensics, see an increase in machine learn-
ing (ML) or ‘artificial intelligence’ (AI) based analy-
sis and investigation tools. Such methods have to un-
dergo rigorous quality assurance evaluations and pro-
ficiency testing like all other methods to be used in
trustworthy forensic processes. The requirements for
such evaluations are very illustratively summarised
for example in the corresponding European Network
of Forensic Science Institutes (ENFSI) Best Prac-
tice Manuals (BPM), see e.g., (European Network of
Forensic Science Institutes (ENFSI), 2021) for the
guidelines on digital image authentication. In con-
trast to validation methodologies for well established
human based analysis methods, which, to a large ex-
tent, rely on internationally acknowledged proficiency
tests, the evaluation of ML or AI based methods has
not jet reached the same degree of maturity. This is
the reason why the (UNICRI and INTERPOL, 2023)
state that using such systems “for high-stakes deci-
sions such as those taken in criminal justice and law
enforcement contexts is controversial.” In quality as-
surance of such methods, besides their accuracy, ro-
bustness and efficiency, also factors focusing on hu-
man control and oversight have to be addressed. Part
of this complex is the question how good an human

expert (here, a forensic practitioner) can interpret the
method and its output for the ‘customer’ in a forensic
process (the beneficiary of the forensic report, usu-
ally a police officer, prosecutor, judge or jury). In
this context, it has to be differentiated between ex-
plainability and interpretability of machine learning
(ML) / ‘artificial intelligence’ (AI) methods. (UNI-
CRI and INTERPOL, 2023) defines the explainabil-
ity of such methods as follows: “Explainability (in a
narrow sense) refers to the ability of developers and
users of an AI system to understand its functioning,
meaning how the system makes decisions or gener-
ates outputs. It focuses on the inner workings of the AI
system, its internal logic or underlying processes.” In
this paper this is addressed by process modelling and
validation work, including opening up the black box
of an ML-based analysis tool, replacing the core part
of the tool (the used classification algorithm) by an
interchangeable module and then benchmarking the
detection performance changes occurring when dif-
ferent, well established, classification algorithms are
used (with corresponding trained models) instead of
the original one while still using the same feature
space.

Interpretability, as the second of these two aspects,
is defined in (UNICRI and INTERPOL, 2023) as:
“the ability to provide reasoning for a specific out-
come the system has produced – in other words, to
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understand why a certain result has been generated.”
Not all AI methods are in their workings and deci-
sions entirely explainable. (UNICRI and INTERPOL,
2023) points out that with the recently developed re-
search field of ‘Explainable AI’ an entire scientific
domain has formed, focusing on work that intends
to ensure the interpretability of non-explainable mod-
els. In this paper, the issue of interpretability is ad-
dressed by creating reproducible data sets with fixed
parameters, including different JPEG-compression al-
gorithms - although this does not ensure interpretabil-
ity for real world use cases, this intermediate step is
necessary in order to assess the output of the ML clas-
sification models.

The ML-based forensic analysis tool considered
in this paper is the steganalysis tool Stegdetect.
It implements steganalysis (as practice of detect-
ing steganographic1 communication) for multiple
different steganographic tools for JPEG images.
In short, Stegdetect tries to detect the presence
of steganographically hidden information in those
images and if corresponding traces are found it
performs an embedding method attributation and
reports a decision confidence. Stegdetect was in-
troduced in 2002 in the seminal work of Provos
and Honeyman (Provos and Honeyman, 2002). It
is described in more detail in Section 2.2 of this paper.

The contributions in this paper are:

• Turning Stegdetect from a black-box detection en-
gine into a gray-box setup, to make its workings
more explainable and allow for a validation of the
feature space and original classification algorithm
used in this tool

• The replacement of the original classification al-
gorithm in Stegdetect and a benchmarking of a set
of alternative methods

• Empirical experiments addressing the explainabil-
ity and interpretability of Stegdetect decisions

The empirical evaluations are performed us-
ing the ALASKA2 image steganography reference
database (Kaggle, 2020). On one hand, it allows
for easy performance of obtained steganalysis perfor-
mances with other publications (since ALASKA2 is
widely established in this field). On the other hand,
the image characteristics (especially the resolution
of 512x512) of the 75000 images in the ALASKA2

1Steganography is considered to be the art and science
of hidden communication. In contrast to cryptography,
where only the content of a communication is hidden but
the communication itself is visible, in steganography also
the existence of the communication channel is hidden, by
embedding/hiding the message into innocent looking cover
objects, e.g., digital images.

set are assumedly very close to images that might
have been used by Provos and Honeyman in 2002.
Thereby, a certain degree of comparability to the re-
sults in that publication could be assumed.

The paper is structured as follows: In Section 2
some details on the state of the art are summarised.
These include a brief introduction to explainability
and interpretability in ML/AI for law enforcement
and forensics as well as a brief summary on multi-
class steganalysis with Stegdetect, which is the basis
for the empirical evaluations performed within this
paper. In Section 3 the experimental setup is intro-
duced, while Section 4 discusses the evaluation re-
sults. The Section 5 closes the paper with a summary
and conclusions.

2 BACKGROUND

In Section 2.1 a perspective on the issues of explain-
ability and interpretability in ML/AI for law enforce-
ment and forensics is presented. This perspective is
strongly based on the United Nations Interregional
Crime and Justice Research Institute (UNICRI) and
International Criminal Police Organization (INTER-
POL) joined efford on a ‘Toolkit for Responsible AI
Innovation in Law Enforcement’ (‘AI Toolkit’). In
Section 2.2 the ML-based tool Stegdetect, which acts
as the illustration example for explainability and inter-
pretability issues in this paper, is introduced in some
detail.

2.1 Explainability and Interpretability
in ML/AI for Law Enforcement and
Forensics

Due to the huge amount of benefits that machine
learning (ML) or ‘artificial intelligence’ (AI) based
methods can offer in law enforcement and forensics
there is a strong pull from policy makers to see them
integrated into an increasing number of procedures
and forensic processes. A good example for this
pull is the following quote from the 60 page docu-
ment (Vaughan et al., 2020) issued by the National
Police Chiefs’ Council (NPCC) of the United King-
dom of Great Britain and Northern Ireland (GB) in
2020: “The insights DF [=digital forensics] science
can bring to an investigation are unique in forensic
science disciplines; society’s pervasive use of tech-
nology gives new power to DF science, allowing
phones, computers and even smart speakers, watches
or doorbells to act as ‘digital witnesses’ to what hap-
pens in daily life. We can get rapid insights from DF
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analysis which in the past could have taken months
of physical surveillance. It also gives unprecedented
access to someone’s innermost thoughts from the con-
tent of conversations, or search histories. If policing
is to use this ability, it is vital it does so responsi-
bly and sensitive to the ethical issues that arise. As
well as new investigative opportunities, advances in
technology offer opportunities to expand DF services.
Rapid growth in cloud services will allow us to sim-
plify and rationalise DF data storage. These same
cloud services allow investigations access to more
processing power, to harness the power of automation
and explore the potential of new and evolving tech-
nologies such as machine learning.”
Until now, forensic practitioners are very hesitant to
rely to much on ML/AI in trustworthy forensic pro-
cesses. The reasons lie on one hand in issues of accu-
racy and proficiency and on the other hand in concerns
regarding explainability and interpretability.

The accuracy of such methods is discussed in
(UNICRI and INTERPOL, 2023) as: “Accuracy
corresponds to the degree to which an AI system
can make correct predictions, recommendations or
decisions. It is important that agencies verify that
any system they are developing and/or intend to use is
highly accurate, as using inaccurate AI systems can
result in various types of harm.” [...] The accuracy of
an AI system is dependent on the way the system was
developed, and in particular the data that was used
to train it. In fact, training the system with sufficient
and good quality data is paramount to building a
good AI model. [...] In most cases, it is preferable
that the training data relates to the same or a similar
context as the one where the AI system will be used.”

The definitions for explainability and inter-
pretability have already been discussed in Section 1
above. As response to the issue of explainability re-
quirements, (UNICRI and INTERPOL, 2023) points
toward the research field of ‘explainable AI’, which
“[...] aims to ensure that even when humans cannot
understand ‘how’ an AI system has reached an out-
put, they can at least understand ‘why’ it has pro-
duced that specific output. This field distinguishes
explainability in a narrow sense, as different from
interpretability. [...] In the context of criminal in-
vestigations, the explainability of AI systems used to
obtain or analyze evidence is particularly important.
In fact, in some jurisdictions, criminal evidence ob-
tained with the support of AI systems has been chal-
lenged in courts on the basis of a lack of understand-
ing of the way the systems function. While the re-
quirements for evidence admissibility are different in
each jurisdiction, a sufficient degree of explainability

needs to be ensured for any AI system used to obtain
and examine criminal evidence. This helps guaran-
teeing, alongside the necessary technical competen-
cies, that law enforcement officers involved in investi-
gations and forensic examinations have sufficient un-
derstanding of the AI systems used to be able to as-
certain and demonstrate the validity and integrity of
criminal evidence in the context of criminal proceed-
ings.”

2.2 Multi-Class Steganalysis with
Stegdetect

In their seminal paper, (Provos and Honeyman, 2002)
criticise the current state-of-the-art in steganalysis ap-
proaches at the point of time of their publication in
2002 as being practically irrelevant, due to faulty ba-
sic assumptions (modelling as a two-class problem
and statistical over-fitting to the training sets). In con-
trast to these publications Provos and Honeyman con-
struct a multi-class pattern recognition based image
steganalysis detector called Stegdetect: Each input
image for Stegdetect is considered to be member of
one of four classes, either it is an unmodified cover or
it is the result of the application of one out of three dif-
ferent steganographic tools (JSteg, JPHide and Out-
Guess 0.13b) which have been amongst the state-of-
the-art at this point of time. Stegdetect is then ap-
plied blindly (without knowledge about the true class)
to two million images downloaded from eBay auc-
tions and one million images obtained from USENET
archives. As a result, Stegdetect classifies over 1% of
all images seem to have been steganographically al-
tered (mostly by JPHide) and therefore contain hidden
messages. Based on these findings, the authors de-
scribe in (Provos and Honeyman, 2002) also a second
tool called Stegbreak for plausibility considerations,
i.e., for verifying the existence of messages hidden by
JPHide in the images identified by Stegdetect. Their
verification approach is based on the assumption that
at least some of the passwords used as embedding
key for the steganographic embedding are weak pass-
words. Based on this assumption, they implement for
Stegbreak a dictionary attack using JPHide’s retrieval
function and large (about 1,800,000 words) multi-
language dictionaries. This attack is applied to all im-
ages that have been flagged as stego objects by the sta-
tistical analyses in Stegdetect. To verify the correct-
ness of their tools, Provos and Honeyman insert tracer
images into every Stegbreak job. As expected the dic-
tionary attack finds the correct passwords for these
tracer images. However, they do not find any single
genuine hidden message. Even though the result of
this large scale investigation is negative, the method-
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ology and concepts for addressing the interpretability
behind the work in (Provos and Honeyman, 2002) are
remarkable2 and are widely considered to be amongst
the first (modern) works on forensic steganalysis.
This forensic steganalysis process, as an conceptual
model, is considered in (Fridrich, 2009) to consist
of the following six steps: 1. selection of investiga-
tion targets, 2. reliable 2-class detection that distin-
guishes stego images from cover images, 3. identi-
fication of the embedding method, 4. identification
of the steganographic software, 5. searching for the
stego key and extracting the embedded data, and 6.
decoding/deciphering the extracted data and obtain-
ing the secret message (cryptanalysis). In this process
model, this paper addresses the steps 2 and 3.

3 EXPERIMENTAL SETUP

Stegdetect was seeing functional updates and bug-
fixes for some years. The final version released in
2004 by the original authors is Stegdetect 0.6. This
last version added detection support for the steganog-
raphy algorithm F5 to the capabilities and is used as
basis for the experiments conducted here.
Three sets of evaluations are performed within this
paper with the following test goals:

• First (test goal T1), baseline tests are performed
with an unmodified Stegdetect (using its original
pre-trained models) on steganography algorithms
supposedly supported by Stegdetect and with
image data that should be similar to the material
considered in (Provos and Honeyman, 2002).

• Second (test goal T2), Stegdetect is used only as a
feature extractor allowing for re-training of detec-
tor models using different classifiers and thereby
for an estimation of the actual performance
of the Stegdetect feature space. In those tests
steganography algorithms supposedly supported
by Stegdetect are used as well as algorithms for
which Stegdetect was not used before.

• Third (test goal T3), a sequence of smaller tests
is used to determine what the re-trained classi-
fiers (and as a consequence the Stegdetect feature
space) are really representing, either image ste-
ganalysis (as originally assumed) or a JPEG en-
coder artefact classification. I.e., it is evaluated
whether the Stegdetects feature space actually de-

2Unfortunately, no similar effort regarding the explain-
ability of Stegdetect as a tool that might be used in forensics
was performed in (Provos and Honeyman, 2002).

tects the slight variations within the image caused
by steganographic embedding or rather the arte-
facts caused by different JPEG compression algo-
rithms used to create the training and testing im-
ages.

3.1 T1: Evaluation of Stegdetect for
Detecting Image Steganography

As one of the few existing multi-class image steganal-
ysis tools existing, Stegdetect is used for the empir-
ical evaluations in this paper. The work performed
is done using the latest official version released by
Niels Provos as Stegdetect 0.6 ((Provos and Honey-
man, 2002), (Provos, 2004)).

Since this version of Stegdetect (and the pre-
trained detection models contained therein) was pub-
lished in 2002, it was decided for our paper to utilise
the cover data of the ALASKA2 dataset (Kaggle,
2020) well established in the image steganography
and steganalysis community, since it consists of dig-
ital images similarly sized to those widely used in
the early 2000s. By using ALASKA2 data (in-
stead of much newer image steganography reference
databases like StegoAppDB) it can be assumed that
Stegdetects pre-trained models should work for the
supported steganography algorithms at those image
sizes.

In the evaluation setup for those baseline tests for
T1, all 75000 cover images from the ALASKA2 set
are used for embedding of a single stego message.
Afterwards, Stegdetect is run on the stego images as
well as on the cover images in order to determine the
detection performance.

For the exemplary stego algorithms, we use F5
(Feng, 2012) JPHide (Church, 2017), both of which
are supposedly supported by Stegdetect.

3.2 T2: Using the Stegdetect Feature
Spaces in Conjunction with Various
Classifiers

Motivated from the differences in detection perfor-
mances reported in (Provos and Honeyman, 2002)
and the results for our own baseline tests (T1), the sec-
ond objective in this paper is to perform an evaluation
of the feature space of Stegdetect. Besides the actual
classification in a black-box mode, the tool allows in
a gray-box (debug) setup also the exporting the fea-
ture vectors that are extracted. It separates them into
the following four feature sub-spaces: 1. Differen-
tial of Squares Error features, 2. Gradient features, 3.
Roughness features, 4. Spline interpolation features.
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In the experiments within this paper, this gray-
box setup is used to enable a feature-level fusion by
concatenating the four feature vectors for those sub-
spaces in order to form a combined feature vector.
Turning Stegdetect from a black-box into a gray-box
feature extractor allows for re-training detector mod-
els using different classifiers from the Weka data min-
ing suite (Frank et al., 2016) and thereby for a better
estimation of the usability of the Stegdetect feature
space. In addition to the stego algorithms natively
supported by Stegdetect (F5 and JPHide), for those
tests also Jsteg (Champine, 2011), Steghide (Hetzl,
2003) and the LSB stego tool Stegano (Bonhomme,
2023) with an additional JPEG compression are uti-
lized in the training and test procedures.

3.3 T3: Steganalysis vs. JPEG Encoder
Artefact Classification

The third experimental setup is designed to inves-
tigate the initial assumption of correlation instead
of causality towards the detection results using the
Stegdetect feature space. In order to perform the ex-
periments, the feature extraction mode of Stegdetect
is used exactly like in T2, again with using the Weka
data mining suite to perform the evaluation.

For the evaluation a subset of 9370 randomly
drawn genuine samples from the ALASKA2 dataset
(Kaggle, 2020) are used and first converted into the
PNG format. Afterwards, the pixel domain Least Sig-
nificant Bit (LSB) replacement tool Stegano (Bon-
homme, 2023) is used to embed a stego message
into those images. After this preparation phase,
the images are converted using ImageMagick’s con-
vert tool (with command line options -quality 100
-sampling-factor 4:4:4) and the Python Image
Library (PIL). We chose the latter, because it is also
used as the JPEG encoder within the Python imple-
mentation of F5 that is used in the test performed here.
With that setup it is obvious that the stego message
embedded by Stegano is destroyed by the JPEG com-
pression performed. The artefacts caused in the image
by the LSB replacement are overwritten by the mod-
ifications and corresponding artefacts cased by the
new last step in the image editing history, the JPEG
compression.

The evaluation setup for T3 consists of multiple
experiments:

1. Single compression with the PIL algorithm for
genuine and stego images

2. Single compression with the ImageMagic algo-
rithm for genuine and stego images

3. Double compression of stego images with PIL in

the first place and ImageMagick in the second
place, single compression of the genuine images
with PIL

4. Double compression of stego images with Im-
ageMagick in the first place and PIL in the second
place, single compression of the genuine images
with ImageMagick

5. Double compression of stego images with PIL in
the first place and ImageMagick in the second
place, single compression of the genuine images
with ImageMagick

6. Double compression of stego images with Im-
ageMagick in the first place and PIL in the second
place, single compression of the genuine images
with PIL

Each of the experiments is designed in order to deter-
mine whether Stegdetects feature space actually de-
tects the slight variations within the image caused
by steganographic embedding or rather the artefacts
caused by different JPEG compression algorithms.

In order to exclude classification-algorithm-
dependent influences, the experiments are run as a
two fold stratified cross validation with the following
five classification algorithms from the Weka data min-
ing suite: Bagging, J48 (C4.5 decision tree), Logistic
Model Tree (LMT), RandomForest and SMO.

4 EVALUATION RESULTS

In this Chapter, the results for the experiments de-
scribed in Chapter 3 are summarised.

4.1 Evaluation Results for T1

The evaluation results using the integrated detection
models of Stegdetect are shown in Table 1. The true
negative rate classifying the unmodified cover images
is with 90.05% rather low, which in return means
a false alarm rate of almost 10 percent. Moreover
the detection rate for JPHide is quite rather low at
31.96%. For F5, Stegdetect offers two different op-
eration modes. Even using the slower (and more pre-
cise) detection mechanism, a mere 8.19% of the stego
samples for the Python implementation of F5 are cor-
rectly detected. Those results significantly deviate
from those reported in the work of Provos and Honey-
man (Provos and Honeyman, 2002). This drop in the
detection performances between 2002 and now indi-
cates that the pre-trained models in Stegdetect did not
age well and lost performance on newer images. This
assumption is evaluated in the tests performed for T2.
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Table 1: Detection performance of Stegdetect (original, pre-
trained models) based on 75000 samples each for the classes
genuine (=cover), JPHide and F5.

True Negative
(on covers)

True Positive
JPHide

True Positive
F5

90.05% 31.96% 8.19%

4.2 Evaluation Results for T2

The evaluation results for the two-fold stratified cross-
validation using the concatenated feature sub-spaces
of Stegdetect together with a training of new detec-
tor models using four arbitrarily selected classifica-
tion schemes of the Weka data mining software are
summarised in Table 2. Overall pretty convincing de-
tection rates are achieved for F5, Jsteg and the JPEG-
converted LSB samples from Stegano. The latter is
quite surprising, as the LSB embedding (which was
done on PNG versions of the cover image files) should
be heavily corrupted or completely destroyed by the
JPEG conversion and compression using ImageMag-
ick’s convert utility even at a quality factor of 100%.
On the other hand, for Steghide and JPHide no us-
able results are achieved. While this might be reason-
able for Steghide, since Stegdetect is not designed for
that algorithm, at least detecting JPHide should yield
a better performance.

Those results for Stegano particularly raise the
question what is distinguished between using those
feature spaces - is it actually the embedding of a
steganographic message within a JPEG compressed
image or is it rather the utilised JPEG compression
library in conjunction with the compression param-
eters. The sole purpose of the T3 experiments is to
answer that question.

4.3 Evaluation Results for T3

After achieving questionable results for some of the
steganography algorithms in T2 (especially for the
LSB replacement performed by Stegano) while using
newly trained models on the existing Stegdetect fea-
ture space, additional experiments with double com-
pression of the images using two different JPEG en-
coders (ImageMagick and PIL) are performed.

The evaluation results for the six experiments
for cover data and Stegano output described in Sec-
tion 3.3 for T3 are summarised in Table 3.

Most of those results indicate that the feature
space is more sensitive to the JPEG compression algo-
rithm rather than the embedded steganographic mes-
sages. As a result, if genuine (=cover) data and stego
data is compressed with the same algorithm, the clas-
sification performance is low. There is one exception,

though. When using a double compression with Im-
ageMagick in the first compression and PIL in the sec-
ond compression, the classification accuracy remains
high - at > 99.75% - when training with PIL com-
pressed genuine images. Since the LSB replacement
performed by Stegano is mostly destroyed during the
JPEG compression, this result is quite surprising, es-
pecially since all other experiments indicate a total
loss of discriminatory power when both sets of im-
ages are compressed with the same JPEG encoder in
the last step. This phenomenon can not be explained
with the current evaluations and would require further
investigations.

Generalising the results obtained, it can be stated
that the high classification accuracies obtained here
(and of course in T2) for Stegano are not due to suc-
cessfully performed steganalysis but rather due to the
fact that the machine learning approach has success-
fully trained the strongest characteristic present which
is in this case the influences imposed to the images by
the JPEG encoder used.

5 SUMMARY & CONCLUSIONS

The results presented here for image steganalysis
show machine learning driven solutions are suffering
from ageing effects of the trained models: In the ex-
periments performed for T1 the performance obtained
in 2023 is much lower than the original performance
reported in 2002 even though the conditions of the
tests are closely reconstructed.
Secondly, detectors that come as a black-box (here
Stegdetect) should be turned into (more) transpar-
ent (i.e., gray- or white-box) mechanisms, which was
here achieved by using the raw feature vectors that
could be output from Stegdetect for debug reasons.
Based on those feature vectors, a wide range of classi-
fication algorithms from a well established data min-
ing suite (here Weka (Frank et al., 2016)) are trained
and the results are analysed and compared. This work
could easily be extended by applying model inter-
pretation or feature selection strategies also offered
within Weka.

Third, Machine learning tends to train/learn the
most significant difference in the feature space pro-
jections of the classes present in the training data. It
is shown, that, in case of the Stegdetect feature space,
this tends to be the artefacts caused by the JPEG
encoder used. In case of steganography tools that
are embedding in the JPEG transform domain (e.g.,
Jsteg which directly modifies the DCT coefficients)
these tools are basically implementing an own, non-
standard JPEG encoder. Therefore, in their case the
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Table 2: Detection performance using the re-trained Stegdetect (with Weka classifiers) in using the concatenated Stegdetect
feature space. Results based on 75000 samples for genuine and stego images in a 2-fold stratified cross-validation.

F5 Jsteg Steghide JPHide Stegano +
ImageMagick
convert

Weka Classifier TN TP TN TP TN TP TN TP TN TP
Bagging 97.9% 96.9% 97.1% 98.1% 67.2% 35.6% 50.2% 52.7% 99.6% 99.8%
J48 95.9% 96.3% 96.9% 96.9% 84.0% 24.7% 56.3% 55.1% 99.5% 99.6%
RandomForest 98.7% 97.8% 97.9% 98.3% 66.9% 25.0% 40.3% 39.5% 99.8% 99.9%
SMO 96.2% 96.5% 95.5% 96.3% 96.4% 10.8% 55.0% 54.9% 99.6% 99.9%

Table 3: T3: Results of the 2-fold stratified cross-validation using the Weka data mining suite with 9370 genuine and 9370
stego samples; In these tests only the steganography tool Stegano performing LSB replacement in pixel domain was used to
create the stego files.

Training PIL com-
pressed Genuine

Training ImageMag-
ick compressed Gen-
uine

Last Compression First
Compres-
sion

Weka Classifier Genuine Stego Genuine Stego

Python Image Library (PIL) none Bagging 28.06% 27.75% -
J48 100.00% 0.00%
LMT 80.90% 18.15%
RandomForest 25.86% 23.23%
SMO 46.82% 45.94%

Image-
Magick

Bagging 38.64% 40.22% 99.79% 99.68%

J48 100.00% 0.00% 99.65% 99.74%
LMT 80.79% 18.32% 99.88% 99.80%
RandomForest 26.89% 24.53% 99.83% 99.94%
SMO 47.85% 48.10% 99.88% 99.78%

ImageMagick none Bagging 28.26% 28.80% -
J48 100.00% 0.00%
LMT 47.56% 48.88%
RandomForest 26.52% 22.37%
SMO 45.12% 48.29%

PIL Bagging 99.90% 99.80% 67.04% 98.04%
J48 99.82% 99.75% 98.09% 97.62%
LMT 99.93% 99.94% 99.46% 98.92%
RandomForest 99.99% 99.96% 99.36% 98.16%
SMO 99.94% 99.94% 99.56% 98.47%

attribution of the stego tool as an attribution of the en-
coder will give reliable results.

Generalising those results, it can be said that ma-
chine learning (ML) / ‘artificial intelligence’ (AI)
methods learn to distinguish the most apparent differ-
ences between the different classes presented in train-
ing. This is not necessarily the one that has been in-
tended in the learning setup but could also be an un-
foreseen effect, as demonstrated above in the discus-
sions on T3.

For that reason, ML-/AI-based forensic methods
need to undergo vigorous quality assurance and

proficiency testing before they can be included into
trustworthy forensic processes and afterwards a
cyclic re-evaluation of the models trained and the
feature spaces used needs to be performed during
the operational life of such a ML-/AI-based forensic
method. Especially in media forensics, models
trained are assumed to age pretty badly since the
assumed source characteristics are significantly
changing over times. This can be well illustrated with
digital images, where the technical developments
since the late 1990s saw a steady but significant
increase in image sizes and resolutions as well
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as leap-breaks with new image formats (e.g., the
High Efficiency Image File Format (HEIF) or High
dynamic range (HDR) image formats).

Considering the explainability and interpretabil-
ity of the outcomes of such forensic investigations, as
requested, amongst others, in (UNICRI and INTER-
POL, 2023), the quality assurance and proficiency
testing work performed needs to ensure not only the
necessary technical competencies of the individual
practitioners involved in an examination. It also needs
to enable the investigators to have sufficient under-
standing of the ML/AI systems used and to be able to
ascertain and demonstrate the validity and integrity of
evidence in the context of criminal proceedings.
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